
VMS File System Update 

September 26, 2016 

- Andy Goldstein 



VMS File System Update 
This information contains forward looking statements and 
is provided solely for your convenience. While the information 
herein is based on our current best estimates, such information is 
subject to change without notice. 





The file structure is older than you think 



A big disk (back then) 



Modern Storage Scale 
•  200MB in 1976 
•  8TB in 2016: 40,000x larger 
− Double every ~2.6 years, or 
− 0.38 bits/year growth 

•  The 32 bit LBN ran out of bits in 2009 
•  We can expect similar, if not faster, growth in the 

future 
•  Storage demand rises to meet capacity 



Other Scale Issues 
•  Number of files on a volume 
•  Number of files in a directory 
− File names created by software vs humans 
− Non-random file name patterns 
− Square law delete performance 

•  Space allocation mechanisms 
•  Volume rebuild time… 



Performance vs Safety 
•  Existing file system: “careful write” 
− Slow but safe 
− Space caching requires rebuild after crash 

•  Old Unix systems: “lazy write” 
− Fast, but indeterminate results after crash 
− fsck mandatory after crash 

•  Most present day systems: lazy write plus write-
ahead logging 



64 Bit LBN 
•  Promotion of disk size and LBN fields to 64 bits 
•  Clean up some overlays and other kluges 
•  Support in I/O exec and most drivers 
•  Disk geometry is going away 
− Home block placement by fixed search delta only 
− Geometry data is entirely, rather than mostly, fictional 

•  Rollout: 
− As much infrastructure as possible in V8.5 
− Complete in V9 



VAFS = VMS Advanced File System 
•  64 bit architecture 
•  Write-ahead logging 
•  Conceptually compatible with existing file system 
− In-place update of metadata 
− File headers in an index file 
− Directories are files 

•  Fully compatible API 
− 99% of applications run without modification 

•  Coexists with existing file system 



VAFS Volume Structure 
Home 
Page Index Stream 

Extent Map File 
Header 

 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 



VAFS File Structure 
File 

Header Data Stream 
Extent Map Data 

Blocks 
 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 



VAFS Internal Architecture 
•  Block signatures and check codes for high 

integrity 
•  Variable size index & directory blocks 
•  Generalized byte streams 
•  Extensible TLV structure for file metadata 
•  B-trees for directories and extent maps 
•  Write-ahead log and write-behind cache 
•  Transaction semantics 



VAFS Architecture 

Disk Page 

2KB 

LSN 

LSN 

LSN 

LSN Ident Info 

Swap Area 



List Page 

Header Attribute 

Value 

Pairs 

Key 

Remainder 

& Value 

Fixed 

Size Key 

Prefix 



Tree 

Leaf 
Nodes 

Non-Leaf 
Nodes 



Tree Nodes 
•  Leaf nodes: data content 
− Key = name of datum 
− Value = data 

•  Non-leaf nodes: index 
− Key = last key of page 
− Value = disk address of page 

•  Extent map nodes 
− Key = stream offset of extent end 
− Value = length & disk address of extent 



Stream 
•  Just a sequence of bytes 
•  Direct stream 
− Stored as an atomic list page value 

•  Mapped stream 
− Stored in disk blocks 
− Extent map is a tree 
− Tree root is the list page value 



Directory 
•  Special file type 
•  Directory content is a special file attribute, stored 

as a tree 
•  Directory entry 
− Key = file name, normalized Unicode + case flags 
− Value = file ID 



Bitmap 
•  Used to allocate file IDs and free blocks 
•  Organized in page-size segments 
•  Extensible tree structure 



Write-Ahead Log 
•  Physical log: updated pages written as is 
− Simple and fast 

•  Log is written with each transaction 
•  LSN and first/last flags identify a complete 

transaction 
•  Timer-driven log cleaning 
•  One log for each cluster node 
•  Recovery = copy logged pages to home locations 



What you get 
•  99% API / application compatibility with the 

existing file system 
•  Coexistence with the existing file system 
•  Traditional “shared everything” cluster operation 
•  Transaction semantics on file operations 
•  2x or better create/delete performance 
•  9 exabyte (9 * 1018) volume size 
•  4G files per volume 
•  Cleaner Unix compatibility 
•  Modern, maintainable code base 



What you don’t get 
•  Volume sets 
•  Disk geometry and allocation placement 
•  Bad block handling 
•  Files are still limited to 1TB (RMS and its API) 
•  More than 4G files / volume (API) 
•  File management utilities (e.g., defraggers) need 

to be rewritten 



Future Opportunities 
•  More lazy write operation, selected by application 

or user 
•  Allocate on write operation 
•  Small file data embedded in the header 
•  File size up to 9 exabytes (requires major API 

changes) 
•  248 files per volume (requires API change) 
•  Larger disk blocks 



Rollout 
•  V8.5 
− 32 bit LBN only 
− No system disk support 
− Possibly lacking quotas and other non-critical features 

•  V9.0 
− 64 bit LBN 
− System disk (platforms TBD) 
− Feature complete 



For more information, please contact us at: 

RnD@vmssoftware.com 

VMS Software, Inc. • 580 Main Street • Bolton MA 01740 • +1 978 451 0110 


